TeX confirmation tool for Quiz Generator.

You can preview the formula by entering the formula in TeX format between [# and #] in the left field and clicking the right arrow button.
* Many of the examples below are quoted from Easy Copy MathJax.
[# #]
[#H_2O#]
[#CO_2#]
[#C_2H_6#]
[#\frac{ 1 }{ 2 }#]
[#\displaystyle \frac{ 1 }{ 2 }#]
[#\left( - \frac{ 1 }{ 2 } \right )^2#]
[#\frac{ a + b }{ c + \frac{ d }{ e } }#]
[#\begin{eqnarray}1 + \frac{ 1 }{ 1 + \frac{ 1 }{ 1 + \frac{ 1 }{ 1 + \ddots } } }= \frac{ 1 }{ 2 } \left( 1 + \sqrt{ 5 } \right)\end{eqnarray}#]
[#0.123#]
[#\frac{ 1 }{ 11 } = 0.\dot{ 0 } \dot{ 9 }#]
[#3.14 \ldots#]
[#\sqrt{ 2 } = 1.4142 \ldots#]
[#\infty#]
[#| x |#]
[#\vert x \vert#]
[#\left| \frac{ x }{ 2 } \right|#]
[#[ x ]#]
[#\lbrack x \rbrack#]
[#\lfloor x \rfloor#]
[#\lceil x \rceil#]
[#1 + 2#]
[#3 - 1#]
[#2 \times 3#]
[#6 \div 3#]
[#\pm 1#]
[#\mp 1#]
[#a \cdot b = ab#]
[#a / b = \frac{a}{b}#]
[#a \equiv b \bmod n#]
[#a \equiv b \pmod n#]
[#x \propto y#]
[#a \gt b#]
[#a \geqq b#]
[#a \lt b#]
[#a \leqq b#]
[#a = b#]
[#a \neq b#]
[#a \fallingdotseq b#]
[#a \sim b#]
[#a \simeq b#]
[#a \approx b#]
[#a \gg b#]
[#a \ll b#]
[#\max f(x)#]
[#\min f(x)#]
[#x \in A#]
[#A \ni x#]
[#x \notin A#]
[#A \subset B#]
[#A \subseteq B#]
[#A \subseteqq B#]
[#A \supset B#]
[#A \supseteq B#]
[#A \supseteqq B#]
[#A \not \subset B#]
[#A \subsetneqq B#]
[#A \cap B#]
[#A \cup B#]
[#\varnothing#]
[#A^c#]
[#\overline{ A }#]
[#A \setminus B#]
[#A \setminus B = A \cap B^c = \{ x \mid x \in A, x \notin B \}#]
[#\mathbb{ N }#]
[#\mathbb{ Z }#]
[#\mathbb{ Q }#]
[#\mathbb{ R }#]
[#\mathbb{ C }#]
[#\mathbb{ H }#]
[#\sup A#]
[#\inf A#]
[#\aleph#]
[#P \land Q#]
[#P \lor Q#]
[#\lnot P#]
[#\overline{ P }#]
[#!P#]
[#P \Rightarrow Q#]
[#P \to Q#]
[#P \implies Q#]
[#P \Leftarrow Q#]
[#P \gets Q#]
[#P \Leftrightarrow Q#]
[#P \leftrightarrow Q#]
[#P \iff Q#]
[#P \equiv Q#]
[#P \models Q#]
[#\forall x#]
[#\exists x#]
[#\nexists#]
[#\therefore#]
[#\because#]
[#{}_n \mathrm{ P }_k#]
[#{}_n \mathrm{ C }_k#]
[#n!#]
[#\binom{ n }{ k }#]
[#{ n \choose k }#]
[#{}_n \prod_k#]
[#{}_n \mathrm{ H }_k#]
[#\begin{eqnarray}{}_n \mathrm{ P }_k = n \cdot ( n - 1 ) \cdots ( n - k + 1 ) = \frac{ n! }{ ( n - k )! }\end{eqnarray}#]
[#\begin{eqnarray}{}_n \mathrm{ C }_k = \binom{ n }{ k } = \frac{ n! }{ k! ( n - k )! }\end{eqnarray}#]
[#\sum_{ i = 1 }^{ n } a_n#]
[#\displaystyle \sum_{ i = 1 }^{ n } a_n#]
[#\begin{eqnarray}\sum_{ k = 1 }^{ n } k^2 = \overbrace{ 1^2 + 2^2 + \cdots + n^2 }^{ n } = \frac{ 1 }{ 6 } n ( n + 1 ) ( 2n + 1 )\end{eqnarray}#]
[#\prod_{ i = 0 }^n x_i#]
[#\displaystyle \prod_{ i = 0 }^n x_i#]
[#\begin{eqnarray}n! = \prod_{ k = 1 }^n k\end{eqnarray}#]
[#\begin{eqnarray}\zeta (s) = \prod_{ p:\mathrm{ prime } } \frac{ 1 }{ 1 - p^{ -s } }\end{eqnarray}#]
[#2^3#]
[#e^{ i \pi }#]
[#\exp ( x )#]
[#\sqrt{ 2 }#]
[#\sqrt{ \mathstrut a } + \sqrt{ \mathstrut b }#]
[#\sqrt[ n ]{ x }#]
[#\log x#]
[#\log_{ 2 } x#]
[#\ln x#]
[#90^{ \circ }#]
[#\frac{ \pi }{ 2 }#]
[#\angle A#]
[#AB /\!/ CD#]
[#AB \parallel CD#]
[#AB \perp CD#]
[#\triangle ABC#]
[#\Box ABCD#]
[#\stackrel{ \Large \frown }{ AB }#]
[#\triangle ABC \equiv \triangle DEF#]
[#\triangle ABC \backsim \triangle DEF#]
[#\triangle ABC \sim \triangle DEF#]
[#\sin x#]
[#\cos x#]
[#\tan x#]
[#\begin{eqnarray}\sin 45^\circ = \frac{ \sqrt{2} }{ 2 }\end{eqnarray}#]
[#\begin{eqnarray}\cos \frac{ \pi }{ 3 } = \frac{ 1 }{ 2 }\end{eqnarray}#]
[#\begin{eqnarray}\tan \theta = \frac{ \sin \theta }{ \cos \theta }\end{eqnarray}#]
[#\sec x#]
[#\csc x#]
[#\cot x#]
[#\arcsin x#]
[#\arccos x#]
[#\arctan x#]
[#\sinh x#]
[#\cosh x#]
[#\tanh x#]
[#\coth x#]
[#\lim_{ x \to +0 } \frac{ 1 }{ x } = \infty#]
[#\displaystyle \lim_{ n \to \infty } f_n(x) = f(x)#]
[#\limsup_{ n \to \infty } a_n#]
[#\varlimsup_{ n \to \infty } a_n#]
[#\liminf_{ n \to \infty } a_n#]
[#\varliminf_{ n \to \infty } a_n#]
[#\begin{eqnarray}\varlimsup_{ n \to \infty } a_n = \lim_{ n \to \infty } \sup_{ k \geqq n } a_k\end{eqnarray}#]
[#\begin{eqnarray}\varliminf_{ n \to \infty } A_n = \bigcup_{ n = 1 }^{ \infty } \bigcap_{ k = n }^{ \infty } A_k = \bigcup_{ n \in \mathbb{ N } } \bigcap_{ k \geqq n } A_k\end{eqnarray}#]
[#\frac{ dy }{ dx }#]
[#\frac{ \mathrm{ d } y }{ \mathrm{ d } x }#]
[#\frac{ d^n y }{ dx^n }#]
[#\left. \frac{ dy }{ dx } \right|_{ x = a }#]
[#f'#]
[#f^{ ( n ) }#]
[#Df#]
[#D_x f#]
[#D^n f#]
[#\dot{ y } = \frac{ dy }{ dt }#]
[#\ddddot{ y } = \frac{ d^4 y }{ dt^4 }#]
[#\begin{eqnarray}f'(x) = \frac{ df }{ dx } = \lim_{ \Delta x \to 0 } \frac{ f(x + \Delta x) - f(x) }{ \Delta x }\end{eqnarray}#]
[#\frac{ \partial f }{ \partial x }#]
[#\frac{ \partial }{ \partial y } \frac{ \partial }{ \partial x } z#]
[#f_x#]
[#f_{ xy }#]
[#\nabla f#]
[#\Delta f#]
[#\begin{eqnarray}\Delta \varphi = \nabla^2 \varphi = \frac{ \partial^2 \varphi }{ \partial x^2 } + \frac{ \partial^2 \varphi }{ \partial y^2 } + \frac{ \partial^2 \varphi }{ \partial z^2 }\end{eqnarray}#]
[#\int_0^1 f(x) dx#]
[#\displaystyle \int_{ - \infty }^{ \infty } f(x) dx#]
[#\begin{eqnarray}\int_0^1 x dx = \left[ \frac{ x^2 }{ 2 } \right]_0^1 = \frac{ 1 }{ 2 }\end{eqnarray}#]
[#\iint_D f(x,y) dxdy#]
[#\iiiint_D f dxdydzdw#]
[#\idotsint_D f(x_1, x_2, \ldots , x_n) dx_1 \cdots dx_n#]
[#\oint_C f(z) dz#]
[#\vec{ a }#]
[#\overrightarrow{ AB }#]
[#\boldsymbol{ A }#]
[#( a_1, a_2, \ldots, a_n )#]
[#\boldsymbol{ \rm{ e } }_k = ( 0, \ldots, 0, \stackrel{ k }{ 1 }, 0, \ldots, 0 )^{ \mathrm{ T } }#]
[#\| x \|#]
[#\vec{ a } \cdot \vec{ b }#]
[#\vec{ a } \times \vec{ b }#]
[#A^{ \mathrm{ T } }#]
[#{}^t \! A#]
[#\dim#]
[#\mathrm{ rank } A#]
[#\mathrm{ Tr } A#]
[#\mathrm{ det }A#]
[#| x |#]
[#\vert x \vert#]
[#\{ x \mid x \in A \}#]
[#\Vert x \Vert#]
[#AB \parallel CD#]
[#\overline{ A }#]
[#\bar{ A }#]
[#\underline{ A }#]
[#/#]
[#\backslash#]
[#\leftarrow#]
[#\longleftarrow#]
[#\rightarrow#]
[#\longrightarrow#]
[#\uparrow#]
[#\downarrow#]
[#\leftrightarrow#]
[#\longleftrightarrow#]
[#\updownarrow#]
[#\Leftarrow#]
[#\Longleftarrow#]
[#\Rightarrow#]
[#\Longrightarrow#]
[#\Uparrow#]
[#\Downarrow#]
[#\Leftrightarrow#]
[#\Longleftrightarrow#]
[#\Updownarrow#]
[#\mapsto#]
[#\longmapsto#]
[#\nearrow#]
[#\searrow#]
[#\nwarrow#]
[#\swarrow#]
[#\vec{ a }#]
[#\overrightarrow{ AB }#]
[#\overleftarrow{ AB }#]
[#( x )#]
[#[ x ]#]
[#\lbrack x \rbrack#]
[#\lceil x \rfloor#]
[#\lfloor x \rceil#]
[#\{ x \}#]
[#\lbrace x \rbrace#]
[#\langle x \rangle#]
[#\left[ \frac{ 1 }{ 2 } \right]#]
[#\overbrace{ x + y + z }#]
[#\overbrace{ a_1 + \cdots + a_n }^{ n }#]
[#\underbrace{ x + y + z }#]
[#\underbrace{ a_1 + \cdots + a_n }_{ n }#]
[#\cdot#]
[#\cdots#]
[#\ldots#]
[#\vdots#]
[#\ddots#]
[#\dot{ a }#]
[#\ddot{ a }#]
[#\circ#]
[#\bullet#]
[#\bigcirc#]
[#\oplus#]
[#\ominus#]
[#\otimes#]
[#\odot#]
[#\triangle#]
[#\bigtriangleup#]
[#\bigtriangledown#]
[#\triangleleft#]
[#\lhd#]
[#\triangleright#]
[#\rhd#]
[#\unlhd#]
[#\unrhd#]
[#\ast#]
[#\star#]
[#\ltimes#]
[#\rtimes#]
[#\diamondsuit#]
[#\heartsuit#]
[#\clubsuit#]
[#\spadesuit#]
[#\flat#]
[#\natural#]
[#\sharp#]
[#\dagger#]
[#\ddagger#]
[#aaa \ bbb#]
[#aaa \quad bbb#]
[#aaa \qquad bbb#]
[#aaa \hspace{ 10pt } bbb#]
[#aaa \! bbb#]
[#\tiny{ abc ABC }#]
[#\scriptsize{ abc ABC }#]
[#\small{ abc ABC }#]
[#\normalsize{ abc ABC }#]
[#\large{ abc ABC }#]
[#\Large{ abc ABC }#]
[#\LARGE{ abc ABC }#]
[#\huge{ abc ABC }#]
[#\Huge{ abc ABC }#]
[#\mathrm{ ABCDEFGHIJKLMNOPQRSTUVWXYZ \ abcdefghijklmnopqrstuvwxyz }#]
[#\mathtt{ ABCDEFGHIJKLMNOPQRSTUVWXYZ \ abcdefghijklmnopqrstuvwxyz }#]
[#\mathsf{ ABCDEFGHIJKLMNOPQRSTUVWXYZ \ abcdefghijklmnopqrstuvwxyz }#]
[#\mathcal{ ABCDEFGHIJKLMNOPQRSTUVWXYZ }#]
[#\mathbf{ ABCDEFGHIJKLMNOPQRSTUVWXYZ \ abcdefghijklmnopqrstuvwxyz }#]
[#\mathit{ ABCDEFGHIJKLMNOPQRSTUVWXYZ \ abcdefghijklmnopqrstuvwxyz }#]
[#\mathbb{ ABCDEFGHIJKLMNOPQRSTUVWXYZ }#]
[#\mathscr{ ABCDEFGHIJKLMN \ OPQRSTUVWXYZ }#]
[#\mathfrak{ ABCDEFGHIJKLMNOPQRSTUVWXYZ \ abcdefghijklmnopqrstuvwxyz }#]
[#a^{ xy }#]
[#{}^{ xy } a#]
[#a_{ xy }#]
[#{}_{ xy } a#]
[#\begin{eqnarray}a_n^2 + a_{ n + 1 }^2 = a_{ 2n + 1 }\end{eqnarray}#]
[#\hat{ a }#]
[#\grave{ a }#]
[#\acute{ a }#]
[#\dot{ a }#]
[#\ddot{ a }#]
[#\bar{ a }#]
[#\vec{ a }#]
[#\check{ a }#]
[#\tilde{ a }#]
[#\breve{ a }#]
[#\widehat{ AAA }#]
[#\widetilde{ AAA }#]
[#\alpha#]
[#\beta#]
[#\gamma#]
[#\delta#]
[#\epsilon#]
[#\varepsilon#]
[#\zeta#]
[#\eta#]
[#\theta#]
[#\vartheta#]
[#\iota#]
[#\kappa#]
[#\lambda#]
[#\mu#]
[#\nu#]
[#\xi#]
[#o#]
[#\pi#]
[#\varpi#]
[#\rho#]
[#\varrho#]
[#\sigma#]
[#\varsigma#]
[#\tau#]
[#\upsilon#]
[#\phi#]
[#\varphi#]
[#\chi#]
[#\psi#]
[#\omega#]
[#A#]
[#B#]
[#\Gamma#]
[#\varGamma#]
[#\Delta#]
[#\varDelta#]
[#E#]
[#Z#]
[#H#]
[#\Theta#]
[#\varTheta#]
[#I#]
[#K#]
[#\Lambda#]
[#\varLambda#]
[#M#]
[#N#]
[#\Xi#]
[#\varXi#]
[#O#]
[#\Pi#]
[#\varPi#]
[#P#]
[#\Sigma#]
[#\varSigma#]
[#T#]
[#\Upsilon#]
[#\varUpsilon#]
[#\Phi#]
[#\varPhi#]
[#X#]
[#\Psi#]
[#\varPsi#]
[#\Omega#]
[#\varOmega#]
[#\S#]
[#\TeX#]
[#\LaTeX#]
[#10^{1024}#]
[#E=mc^2#]
[#e^{i\theta}=\cos\theta+i\sin\theta#]
[#i\hbar\frac{\partial\psi}{\partial t} = -\frac{\hbar^2}{2m}\frac{\partial^2\psi}{\partial x^2}+V(x,t)\psi#]
[#\frac{\partial^2 z}{\partial t^2}=c^2 (\frac{\partial^2 z}{\partial x^2}+\frac{\partial^2 z}{\partial y^2})-\mu \frac{\partial z}{\partial t}#]
[#G_{\mu\nu}+\Lambda g_{\mu\nu}=\frac{8\pi G}{c^4}T_{\mu\nu}#]
[##]
[##]
Powered by QuizGenerator