Loading [MathJax]/jax/element/mml/optable/BasicLatin.js

TeX confirmation tool for Quiz Generator.

You can preview the formula by entering the formula in TeX format between [# and #] in the left field and clicking the right arrow button.
* Many of the examples below are quoted from Easy Copy MathJax.
H2O
CO2
C2H6
12
12
(12)2
a+bc+de
1+11+11+11+=12(1+5)
0.123
111=0.˙0˙9
3.14
2=1.4142
|x|
|x|
|x2|
[x]
[x]
x
x
1+2
31
2×3
6÷3
±1
1
ab=ab
a/b=ab
abmod
a \equiv b \pmod n
x \propto y
a \gt b
a \geqq b
a \lt b
a \leqq b
a = b
a \neq b
a \fallingdotseq b
a \sim b
a \simeq b
a \approx b
a \gg b
a \ll b
\max f(x)
\min f(x)
x \in A
A \ni x
x \notin A
A \subset B
A \subseteq B
A \subseteqq B
A \supset B
A \supseteq B
A \supseteqq B
A \not \subset B
A \subsetneqq B
A \cap B
A \cup B
\varnothing
A^c
\overline{ A }
A \setminus B
A \setminus B = A \cap B^c = \{ x \mid x \in A, x \notin B \}
\mathbb{ N }
\mathbb{ Z }
\mathbb{ Q }
\mathbb{ R }
\mathbb{ C }
\mathbb{ H }
\sup A
\inf A
\aleph
P \land Q
P \lor Q
\lnot P
\overline{ P }
!P
P \Rightarrow Q
P \to Q
P \implies Q
P \Leftarrow Q
P \gets Q
P \Leftrightarrow Q
P \leftrightarrow Q
P \iff Q
P \equiv Q
P \models Q
\forall x
\exists x
\nexists
\therefore
\because
{}_n \mathrm{ P }_k
{}_n \mathrm{ C }_k
n!
\binom{ n }{ k }
{ n \choose k }
{}_n \prod_k
{}_n \mathrm{ H }_k
\begin{eqnarray}{}_n \mathrm{ P }_k = n \cdot ( n - 1 ) \cdots ( n - k + 1 ) = \frac{ n! }{ ( n - k )! }\end{eqnarray}
\begin{eqnarray}{}_n \mathrm{ C }_k = \binom{ n }{ k } = \frac{ n! }{ k! ( n - k )! }\end{eqnarray}
\sum_{ i = 1 }^{ n } a_n
\displaystyle \sum_{ i = 1 }^{ n } a_n
\begin{eqnarray}\sum_{ k = 1 }^{ n } k^2 = \overbrace{ 1^2 + 2^2 + \cdots + n^2 }^{ n } = \frac{ 1 }{ 6 } n ( n + 1 ) ( 2n + 1 )\end{eqnarray}
\prod_{ i = 0 }^n x_i
\displaystyle \prod_{ i = 0 }^n x_i
\begin{eqnarray}n! = \prod_{ k = 1 }^n k\end{eqnarray}
\begin{eqnarray}\zeta (s) = \prod_{ p:\mathrm{ prime } } \frac{ 1 }{ 1 - p^{ -s } }\end{eqnarray}
2^3
e^{ i \pi }
\exp ( x )
\sqrt{ 2 }
\sqrt{ \mathstrut a } + \sqrt{ \mathstrut b }
\sqrt[ n ]{ x }
\log x
\log_{ 2 } x
\ln x
90^{ \circ }
\frac{ \pi }{ 2 }
\angle A
AB /\!/ CD
AB \parallel CD
AB \perp CD
\triangle ABC
\Box ABCD
\stackrel{ \Large \frown }{ AB }
\triangle ABC \equiv \triangle DEF
\triangle ABC \backsim \triangle DEF
\triangle ABC \sim \triangle DEF
\sin x
\cos x
\tan x
\begin{eqnarray}\sin 45^\circ = \frac{ \sqrt{2} }{ 2 }\end{eqnarray}
\begin{eqnarray}\cos \frac{ \pi }{ 3 } = \frac{ 1 }{ 2 }\end{eqnarray}
\begin{eqnarray}\tan \theta = \frac{ \sin \theta }{ \cos \theta }\end{eqnarray}
\sec x
\csc x
\cot x
\arcsin x
\arccos x
\arctan x
\sinh x
\cosh x
\tanh x
\coth x
\lim_{ x \to +0 } \frac{ 1 }{ x } = \infty
\displaystyle \lim_{ n \to \infty } f_n(x) = f(x)
\limsup_{ n \to \infty } a_n
\varlimsup_{ n \to \infty } a_n
\liminf_{ n \to \infty } a_n
\varliminf_{ n \to \infty } a_n
\begin{eqnarray}\varlimsup_{ n \to \infty } a_n = \lim_{ n \to \infty } \sup_{ k \geqq n } a_k\end{eqnarray}
\begin{eqnarray}\varliminf_{ n \to \infty } A_n = \bigcup_{ n = 1 }^{ \infty } \bigcap_{ k = n }^{ \infty } A_k = \bigcup_{ n \in \mathbb{ N } } \bigcap_{ k \geqq n } A_k\end{eqnarray}
\frac{ dy }{ dx }
\frac{ \mathrm{ d } y }{ \mathrm{ d } x }
\frac{ d^n y }{ dx^n }
\left. \frac{ dy }{ dx } \right|_{ x = a }
f'
f^{ ( n ) }
Df
D_x f
D^n f
\dot{ y } = \frac{ dy }{ dt }
\ddddot{ y } = \frac{ d^4 y }{ dt^4 }
\begin{eqnarray}f'(x) = \frac{ df }{ dx } = \lim_{ \Delta x \to 0 } \frac{ f(x + \Delta x) - f(x) }{ \Delta x }\end{eqnarray}
\frac{ \partial f }{ \partial x }
\frac{ \partial }{ \partial y } \frac{ \partial }{ \partial x } z
f_x
f_{ xy }
\nabla f
\Delta f
\begin{eqnarray}\Delta \varphi = \nabla^2 \varphi = \frac{ \partial^2 \varphi }{ \partial x^2 } + \frac{ \partial^2 \varphi }{ \partial y^2 } + \frac{ \partial^2 \varphi }{ \partial z^2 }\end{eqnarray}
\int_0^1 f(x) dx
\displaystyle \int_{ - \infty }^{ \infty } f(x) dx
\begin{eqnarray}\int_0^1 x dx = \left[ \frac{ x^2 }{ 2 } \right]_0^1 = \frac{ 1 }{ 2 }\end{eqnarray}
\iint_D f(x,y) dxdy
\iiiint_D f dxdydzdw
\idotsint_D f(x_1, x_2, \ldots , x_n) dx_1 \cdots dx_n
\oint_C f(z) dz
\vec{ a }
\overrightarrow{ AB }
\boldsymbol{ A }
( a_1, a_2, \ldots, a_n )
\boldsymbol{ \rm{ e } }_k = ( 0, \ldots, 0, \stackrel{ k }{ 1 }, 0, \ldots, 0 )^{ \mathrm{ T } }
\| x \|
\vec{ a } \cdot \vec{ b }
\vec{ a } \times \vec{ b }
A^{ \mathrm{ T } }
{}^t \! A
\dim
\mathrm{ rank } A
\mathrm{ Tr } A
\mathrm{ det }A
| x |
\vert x \vert
\{ x \mid x \in A \}
\Vert x \Vert
AB \parallel CD
\overline{ A }
\bar{ A }
\underline{ A }
/
\backslash
\leftarrow
\longleftarrow
\rightarrow
\longrightarrow
\uparrow
\downarrow
\leftrightarrow
\longleftrightarrow
\updownarrow
\Leftarrow
\Longleftarrow
\Rightarrow
\Longrightarrow
\Uparrow
\Downarrow
\Leftrightarrow
\Longleftrightarrow
\Updownarrow
\mapsto
\longmapsto
\nearrow
\searrow
\nwarrow
\swarrow
\vec{ a }
\overrightarrow{ AB }
\overleftarrow{ AB }
( x )
[ x ]
\lbrack x \rbrack
\lceil x \rfloor
\lfloor x \rceil
\{ x \}
\lbrace x \rbrace
\langle x \rangle
\left[ \frac{ 1 }{ 2 } \right]
\overbrace{ x + y + z }
\overbrace{ a_1 + \cdots + a_n }^{ n }
\underbrace{ x + y + z }
\underbrace{ a_1 + \cdots + a_n }_{ n }
\cdot
\cdots
\ldots
\vdots
\ddots
\dot{ a }
\ddot{ a }
\circ
\bullet
\bigcirc
\oplus
\ominus
\otimes
\odot
\triangle
\bigtriangleup
\bigtriangledown
\triangleleft
\lhd
\triangleright
\rhd
\unlhd
\unrhd
\ast
\star
\ltimes
\rtimes
\diamondsuit
\heartsuit
\clubsuit
\spadesuit
\flat
\natural
\sharp
\dagger
\ddagger
aaa \ bbb
aaa \quad bbb
aaa \qquad bbb
aaa \hspace{ 10pt } bbb
aaa \! bbb
\tiny{ abc ABC }
\scriptsize{ abc ABC }
\small{ abc ABC }
\normalsize{ abc ABC }
\large{ abc ABC }
\Large{ abc ABC }
\LARGE{ abc ABC }
\huge{ abc ABC }
\Huge{ abc ABC }
\mathrm{ ABCDEFGHIJKLMNOPQRSTUVWXYZ \ abcdefghijklmnopqrstuvwxyz }
\mathtt{ ABCDEFGHIJKLMNOPQRSTUVWXYZ \ abcdefghijklmnopqrstuvwxyz }
\mathsf{ ABCDEFGHIJKLMNOPQRSTUVWXYZ \ abcdefghijklmnopqrstuvwxyz }
\mathcal{ ABCDEFGHIJKLMNOPQRSTUVWXYZ }
\mathbf{ ABCDEFGHIJKLMNOPQRSTUVWXYZ \ abcdefghijklmnopqrstuvwxyz }
\mathit{ ABCDEFGHIJKLMNOPQRSTUVWXYZ \ abcdefghijklmnopqrstuvwxyz }
\mathbb{ ABCDEFGHIJKLMNOPQRSTUVWXYZ }
\mathscr{ ABCDEFGHIJKLMN \ OPQRSTUVWXYZ }
\mathfrak{ ABCDEFGHIJKLMNOPQRSTUVWXYZ \ abcdefghijklmnopqrstuvwxyz }
a^{ xy }
{}^{ xy } a
a_{ xy }
{}_{ xy } a
\begin{eqnarray}a_n^2 + a_{ n + 1 }^2 = a_{ 2n + 1 }\end{eqnarray}
\hat{ a }
\grave{ a }
\acute{ a }
\dot{ a }
\ddot{ a }
\bar{ a }
\vec{ a }
\check{ a }
\tilde{ a }
\breve{ a }
\widehat{ AAA }
\widetilde{ AAA }
\alpha
\beta
\gamma
\delta
\epsilon
\varepsilon
\zeta
\eta
\theta
\vartheta
\iota
\kappa
\lambda
\mu
\nu
\xi
o
\pi
\varpi
\rho
\varrho
\sigma
\varsigma
\tau
\upsilon
\phi
\varphi
\chi
\psi
\omega
A
B
\Gamma
\varGamma
\Delta
\varDelta
E
Z
H
\Theta
\varTheta
I
K
\Lambda
\varLambda
M
N
\Xi
\varXi
O
\Pi
\varPi
P
\Sigma
\varSigma
T
\Upsilon
\varUpsilon
\Phi
\varPhi
X
\Psi
\varPsi
\Omega
\varOmega
\S
\TeX
\LaTeX
10^{1024}
E=mc^2
e^{i\theta}=\cos\theta+i\sin\theta
i\hbar\frac{\partial\psi}{\partial t} = -\frac{\hbar^2}{2m}\frac{\partial^2\psi}{\partial x^2}+V(x,t)\psi
\frac{\partial^2 z}{\partial t^2}=c^2 (\frac{\partial^2 z}{\partial x^2}+\frac{\partial^2 z}{\partial y^2})-\mu \frac{\partial z}{\partial t}
G_{\mu\nu}+\Lambda g_{\mu\nu}=\frac{8\pi G}{c^4}T_{\mu\nu}
Powered by QuizGenerator