You can preview the formula by entering the formula in TeX format between [# and #] in the left field and clicking the right arrow button.
* Many of the examples below are quoted from Easy Copy MathJax.
H2O
CO2
C2H6
12
12
(−12)2
a+bc+de
1+11+11+11+⋱=12(1+√5)
0.123
111=0.˙0˙9
3.14…
√2=1.4142…
∞
|x|
|x|
|x2|
[x]
[x]
⌊x⌋
⌈x⌉
1+2
3−1
2×3
6÷3
±1
∓1
a⋅b=ab
a/b=ab
a≡bmod
a \equiv b \pmod n
x \propto y
a \gt b
a \geqq b
a \lt b
a \leqq b
a = b
a \neq b
a \fallingdotseq b
a \sim b
a \simeq b
a \approx b
a \gg b
a \ll b
\max f(x)
\min f(x)
x \in A
A \ni x
x \notin A
A \subset B
A \subseteq B
A \subseteqq B
A \supset B
A \supseteq B
A \supseteqq B
A \not \subset B
A \subsetneqq B
A \cap B
A \cup B
\varnothing
A^c
\overline{ A }
A \setminus B
A \setminus B = A \cap B^c = \{ x \mid x \in A, x \notin B \}
\mathbb{ N }
\mathbb{ Z }
\mathbb{ Q }
\mathbb{ R }
\mathbb{ C }
\mathbb{ H }
\sup A
\inf A
\aleph
P \land Q
P \lor Q
\lnot P
\overline{ P }
!P
P \Rightarrow Q
P \to Q
P \implies Q
P \Leftarrow Q
P \gets Q
P \Leftrightarrow Q
P \leftrightarrow Q
P \iff Q
P \equiv Q
P \models Q
\forall x
\exists x
\nexists
\therefore
\because
{}_n \mathrm{ P }_k
{}_n \mathrm{ C }_k
n!
\binom{ n }{ k }
{ n \choose k }
{}_n \prod_k
{}_n \mathrm{ H }_k
\begin{eqnarray}{}_n \mathrm{ P }_k = n \cdot ( n - 1 ) \cdots ( n - k + 1 ) = \frac{ n! }{ ( n - k )! }\end{eqnarray}
\begin{eqnarray}{}_n \mathrm{ C }_k = \binom{ n }{ k } = \frac{ n! }{ k! ( n - k )! }\end{eqnarray}
\sum_{ i = 1 }^{ n } a_n
\displaystyle \sum_{ i = 1 }^{ n } a_n
\begin{eqnarray}\sum_{ k = 1 }^{ n } k^2 = \overbrace{ 1^2 + 2^2 + \cdots + n^2 }^{ n } = \frac{ 1 }{ 6 } n ( n + 1 ) ( 2n + 1 )\end{eqnarray}
\prod_{ i = 0 }^n x_i
\displaystyle \prod_{ i = 0 }^n x_i
\begin{eqnarray}n! = \prod_{ k = 1 }^n k\end{eqnarray}
\begin{eqnarray}\zeta (s) = \prod_{ p:\mathrm{ prime } } \frac{ 1 }{ 1 - p^{ -s } }\end{eqnarray}
\begin{eqnarray}\varlimsup_{ n \to \infty } a_n = \lim_{ n \to \infty } \sup_{ k \geqq n } a_k\end{eqnarray}
\begin{eqnarray}\varliminf_{ n \to \infty } A_n = \bigcup_{ n = 1 }^{ \infty } \bigcap_{ k = n }^{ \infty } A_k = \bigcup_{ n \in \mathbb{ N } } \bigcap_{ k \geqq n } A_k\end{eqnarray}